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2 sum and product of matrices

In this section, we will do some algebra of matrices. That means, we
will add, subtract, multiply matrices. Matrices will usually be denoted

by upper case letters, A, B,C,.... Such a matrix
11 4d12 Q13 *°* Qin
g1 Q22 a2z '+ AQgn
A= 3y dg2 dAzz ++*+ AQAgn
L Uml Am2 Am3 *rr Omn |

is also denoted by [a;;].

Definition 2.1.1 Two matrices A = |a;;] and B = [b;;] are equal if

both A and B have same size m X n and the entries

8ij = bj; Joralfi 1<ti<m and 1<j<n

Definition 2.1.2 Following are some standard terminologies:

1. A matrix with only one column is called a column matrix or

column vector. For example,

13
a= 1|19
23

i1s a column matrix.

2. A matrix with only one row is called a row matrix or row vec-

tor. For example
b=[4 11 13 19 23

1S a row matrix.



2.1.1 Matrix Addition

Definition 2.1.3 We difine addition of two matrices of same size.

Suppose A = [a;;] and B = [b;;] be two matrices of same size m x n.

Then the sum A+ B is defined to be the matrix of size m x n given by

A+B=[{1.gj+

1. For example, with

4 -5 9 15 |
A=]la —8l.B=| =5 1B
10 14 | 1 &

bisl.

2. Also, for example, with

O — -390 =2 P 0.5
J =22 -3

5 18
we have A+B = | -2 10
#1215 |
2.7 | <8
we have C+D =
-5 0

3. While, the sum A + ' is not defined because A and C' do not

haye same size.

2.1.2 Scalar Multiplication

Recall, in some contexts, real numbers are referred to as scalars (in
contrast with vectors.) We define, multiplication of a matrix A by a

scalar c.

0.7
—7.2




Definition 2.1.4 Let A = |a;;] be an m X n matrix and ¢ be a scalar.
We define Scalar multiple cA of A by ¢ as the matrix of same size

given by

cA = [(Ifl,_'j].

1. For a matrix A, the negative of —A denotes (—1)A. Also A— B :=
A+ (-1)B.

2. Let ¢ =11 and

4 =5 9 15 |
10 14 11 1 |

Then, with ¢ = 11 we have

4 =5 44 =55
cA=11| 3 -8 | =| 33 -88
10 14 | 110 154
Likewise, A— B=A+ (-1)B =
[ 4 =5 9 15 | o 2Rl Pl =18
3 —8|+(-1)]|-518|=]|3 -8|+| 5 -18
| 10 14 | L% ¥ 10 14| | -11 -1 |
T e owe S [T =5 =20
=| 3+5 —-8-18| =] 8 —26
10-11 14-1 —1 38




2.1.3 Matrix Multiplication

.-

Definition 2.1.5 Suppose A = [a;;| is a matrix of size m x n and
B = |b;;| is a matrix of size n x p. Then the product AB = |[¢;;| is a
matrix size m x p where

n

Cij ‘= aithyj + aizbz; + aizbsj + -« - + ainbynj = E @ikby;.
k=1

1. Note that number of columns (n) of A must be equal to number

of rows (n) of B, for the product AB to be defined.

2. Note the number of rows of AB is equal to is same as that (m) of

A and number of columns of AB is equal to is same as that (n)

of B.

Exercise 2.1.6 Let

Compute AB abd BA. We have

114+ (—1)%24+7%x1 114+ (—1)*14+7%(=3) 1%2+(—1)*1+7%2 |
AB= | 21+ (=1)%2+8*1 2x1+(=1)*1+8%(—=3) 2%2+(—1)*1+8x%2
| 31 4+1%x24+(—1)*x1 3%*14+1x1+4+(—1)*(—3) 3%*2+1*x1+4+(—1)*2
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6 —21 15
=|8 —-23 19
(4. L b

Now, we compute BA. We have

Exldla40%8 IeeDEistDits] TaTiisBE0l
BA=] 2a141225108 BalBDilsl-Nilsl  BeaTilebilel
| 1x1+(—3)*2+2%3 1*(-1)+(-3)*(-1)+2*%1 1*T+(-3)*8+2x%(

'S § 13
= |7 <2 92
1 4 -19

Also note that AB # BA.

Exercise 2.1.7 : Let
[0 -1 3] i 2
A= |4 0 2], and H=]| =3
F 8 -1 7 | . B

Compute AB and BA, if definded.

Solution: Note BA is not defined, because size of B is 3 x 1 and size
of Ais 3 x 3. But AB is defined and is a 3 x 1 matrix (or a column

matrix). We have

[ 0%2+ (-1 *(-3)+3x1] [ 6]
AB = 4%2+0%(-3)+2%1 | =] 10
| 8*24+ (1) *(=3)+Tx*1 | | 26 |
Exercise 2.1.8 -Let

1 03 -2 4
A= and B =
6 13 8 =17 20

1 ©
4 2



A,

algebra of matrices

Theorem 2.2.1 (Properties) Let A, B,C be three m x n matrices

and ¢, d be scalars. Then

1. A+ B=8B+A C'ommutativity of matrixz addition

2. (A+B)+C=A+(B+C) Associativity of matrixz addition

3. (cd)A = c(dA) Associativity of scalar multiplication
4, 1A=A identity of scalar multiplication

5. ¢c(A+ B)=cA+ cB Distributivity of scalar multiplication
6. (c+d)A=cA+dA Distributivity of scalar multiplication

Proof. One needs to prove all these statements using definitions of ad-
dition and scalar multiplication. To prove the commutativity of ma-
trix addition (1), Let A = [a;;|, B = |b;;]. Both A and B have same size
m xn,so A+ B, B+ A are defined. From definition

A+ B = [u.l-j] -1 [b;‘j] = [u,:-j +II}1'j'] and B+ A= [b”l -+ [u;j] = [b,;j +uij],

From commutative property of addition of real numbers, we have a;; +
bij = bij+a;;. Therefore, from definition of equality of matrices, A+ B =

B + A. So, (1) is proved. Other properties are proved similarly. n

Remark. For matrices A, B,C as in the theorem, by the expression
A+ B+ C wemean (A+ B) 4+ C or A+ (B + C). It is well defined,
because (A + B) + C = A + (B + C) by associatieve property(2) of
matrix addition.

Theorem 2.2.2 Let O,,,, denote the m x n matrix whose entries are

all zero. Let A be a m x n matrix. Then

1. Then A 4+ O,,.,, = A.



2. We have A + (—A) = O

3. If cA=0,,,, then either c=00r A =0.

We say, on the set of all m x n matrices, O,,, ts an additive identity

(property (1)), and (—A) is the additive inverse of A (property (2))

2.2.1 Properties of matrix multiplication

Theorem 2.2.3 (Mult-Properties) Let A, B,C' be three matrices
(of varying sizes) so that all the products below are defined and ¢ be a

scalars. Then

1. AB # BA Failure of Commutativity of multiplication
2. (AB)C = A(BC) Associativity of multiplication

3. (A+ B)C = AC + BC Left — Distributivity of multiplication

4. A(B+C)= AB + AC Right — Distributivity of multiplication

5. ¢(AB)=(cA)B an Associativity

In (1), by AB # BA, we mean AB is not always equal to BA.

Proof. We will only prove (4). In this case, let A be a matrix of size

m x n and then B, C' would have to be of same size n x p. Write

217 a2 a3 ***+ Qin
gy dg2 3 -+ A2
A = 131 (139 fIag *'* {3n 1

L A1 Opm2 Omy ' OQmun g



and

Therefore, A(B + C) =

11 @12

(g1 33

(31 I3z

| Bl A2
which 1s

(13
UER

(33

Ly

Lnn

I'Ju -+ C11

b1 + €21
b1 + €31

b‘ﬁl -+ Cnl

C11
C21

C31

C12

Ca2

C32

Cn2

blg + C12

baa + €99

by + 49

bﬂ‘.? -+ Cn2

S ro anbi + o) p, aw(bia + cx2)
> ey a2k (brr + cxa)
= | k=1 93k(br1 + cr1)

> heq a2k (b2 + cxa)
> k=1 a3k (brz + cx2)

L D k=1 Gmk(bra + €x1) D ojo; Gmik(br2 + ci2)

C13

R

Chns

f)l;} + C13
bay + €2

E}j:],‘l‘ﬂ;ﬂ.

bna + Cn3

2::1 “lk{bkp + Ckp) -
Z:=1 “Ek{bkp - Ckp)
2:::1 ﬂﬁk{bkp : Ekp)

Z:=1ﬂmk{bkp+fkp} |

bﬁp 2 2 C2p




2.2, PROPERTIES OF MATRIX OPERATIONS

o
o

which is

W n n " =
D k1 Gkbry D opoyakbra o Dopn Gikbigp

" mn n
N n n
D kw1 @3kbrr D opogaskbkz o Do g Gskbip

L D ket Gmkbir Doy @mkbka ccc 304l Gmkbip

+ = AB + AC
[ S he101kCk1 Y pei G1kCk2 't Y ey G1kChp
D he1 G2kCk1 D pey G2kCK2  *** D pey G2kChp
Zzzl A3k Ck1 ZL] A3kCk2 " E;::l A3k Chp

n n n
L z.l.;=1 ”mkf:kl) Z:!-:=1 AmkCk2 "' E;‘;:] Ak Chp

So, A(B+ C) = AB + AC and the proof of complete. =

Alternate way to write the same proof: Let A be a matrix of size

m x n and then B, C' would have to be of same size n x p. Write
A=lai), B=l[b], C=]ex).
Then B + C = [b; + cxj]. So,
A(B + C) = [aik][bi; + ;] = [vi;] (say).

Then the (i)™ entry a;; of A(B + C') is given by

n

n n
;= Z ;i (b + cxj) = E by + E Ak Cj

k=1 k=1 k=1
But
AB = |:Z n.ikbkj] , and AC = [Z u;,-krrkj]
k=1 fe=1

So, the (i)™ entry of AB + AC is also equal to @;j. Therefore A(B +
(') = AB + AC' and the proof is complete. u



